爱因斯坦智商多少_爱因斯坦场方程|世界看热讯
2023-03-05 18:21:09 互联网

小伙伴们,今天给大家科普一个小知识。在日常生活中我们或多或少的都会接触到爱因斯坦智商多少_爱因斯坦场方程方面的一些说法,有的小伙伴还不是很了解,今天就给大家详细的介绍一下关于爱因斯坦智商多少_爱因斯坦场方程的相关内容。

1、这是一个二阶张量方程,R_uv为里契张量表示了空间的弯曲状况。

2、T_uv为能量-动量张量,表示了物质分布和运动状况。


(资料图片)

3、g_uv为度规,κ为系数,可由低速的牛顿理论来确定。

4、"_"后字母为下标,"^"后字母为上标。

5、意义:空间物质的能量-动量(T_uv)分布=空间的弯曲状况(R_uv)解的形式是:ds^2=Adt^2+Bdr^2+Cdθ^2+Ddφ^2式中A,B,C,D为度规g_uv分量。

6、考虑能量-动量张量T_uv的解比较复杂。

7、最简单的就是让T_uv等于0,对于真空静止球对称外部的情况,则有施瓦西外解。

8、如果是该球体内部的情况,或者是考虑球体轴对称的旋转,就稍微复杂一点。

9、还有更复杂的星云内部或外部的情况,星云内部的星球还要运动、转动等。

10、这些因素都要影响到星云内部的曲面空间。

11、2.含宇宙常数项的场方程:R_uv-1/2*R*g_uv+∧*g_uv=κ*T_uv此处的∧是宇宙常数,其物理意义是宇宙真空场。

12、∧*g_uv为宇宙项。

13、如果从数学上理解的话,则上面的场方程也可解出下面的形式:ds^2=Adt^2+Bdr^2+Cdθ^2+Ddφ^2式中A,B,C,D为度规g_uv分量。

14、这里的ds就是表达空间弯曲程度的一小段距离。

15、同时因为4维空间与时间有关,ds随时间也会变化。

16、这时,如果没有宇宙项,ds随时间是增大的,宇宙就是膨胀的。

17、如果加了宇宙项,选取适当的∧值,ds不随时间变化,宇宙就是稳定的。

18、如果从物理意义上理解的话,把宇宙项移到式右边,则是:R_uv-1/2*R*g_uv=κ*T_uv-∧*g_uv∧项为负值,起到了斥力的作用,即宇宙真空场与普通物质场之间存在着斥力。

19、宇宙项和通常物质场的引力作用起到了平衡的作用,所以可得到稳定的宇宙解。

猜你喜欢